Назад
Посмотреть правильные ответы
Компьютерная логика: основы, логические операции (Часть 1). Алгебраическое сложение и умножение чисел, представленных в форме с плавающей запятой.
В тесте 18 вопросов.
1). (из 18): В случае алгебраического сложения чисел, представленных в форме с плавающей запятой:
Выберите несколько правильных ответов
а) их мантиссы должны быть одинаковы;
б) их мантиссы складываются;
в) их порядки должны быть одинаковы;
г) их порядки складываются;
д) их порядки вычитаються;
2). (из 18): Найдите сумму двух чисел, представленных в форме с плавающей запятой: m1=0.1001011, p1=1010; m2=0.10101, p2=1000;
Выберите единственный правильный ответ
а) m3=10011111; p3=1010;
б) m3=11; p3=1010;
в) m3=0.11; p3=1010;
г) m3=0.11; p3=1000;
3). (из 18): При операции умножения двух чисел, представленных в форме с плавающей запятой:
Выберите несколько правильных ответов
а) их мантиссы умножаются, как числа с фиксированной запятой;
б) их мантиссы умножаются, как числа с плавающей запятой;
в) их порядки умножаются как числа с фиксированной запятой;
г) их порядки умножаются как числа с плавающей запятой;
д) их порядки складываются;
е) их мантиссы складываются, как числа с фиксированной запятой;
4). (из 18): Укажите правильно реализованный метод деления с восстановлением остатка двух чисел 1794/78 (см. рис. 4.1):
Выберите единственный правильный ответ
а) А);
б) Б);
в) В);
г) Г);
д) Д);
5). (из 18): Укажите правильно реализованный метод деления без восстановления остатка двух чисел 1710/18 (см. рис. 4.2):
Выберите единственный правильный ответ
а) А);
б) Б);
в) В);
г) Г);
6). (из 18): Получить дополнительный код для числа, представленного в Д1-коде, где для знака числа отводится старший разряд. -83154=1.1000 0011 0001 0101 0100:
Выберите единственный правильный ответ
а) 1.1110 1001 0111 1011 1010;
б) 1.0001 0110 1000 0100 0110;
в) 1.0001 0110 1000 0100 0101;
г) 1.0001 0100 0100 1101 0010;
д) 1.1110 1011 1011 0010 1110;
е) 1000 0011 0001 0101 0110 0100;
7). (из 18): Получить обратный код для числа, представленного в Д1-коде, где для знака числа отводится старший разряд. 5671=0.0011 0110 0111 0001:
Выберите единственный правильный ответ
а) 1.0011 0110 0111 0001;
б) 1.0110 0011 0010 1000;
в) 0.0011 0110 0111 0001;
г) 0.0110 0011 0010 1000;
д) 1.0110 0011 0010 1001;
8). (из 18): Получить дополнительный код для числа, представленного в Д1-коде, где для знака числа отводится старший разряд. 59473=0.0101 1001 0100 0111 0011:
Выберите единственный правильный ответ
а) 1.0101 1001 0100 0111 0011;
б) 1.0100 0000 0101 0010 0111;
в) 1.0100 0000 0101 0010 0110;
г) 0.1011 1111 1010 1101 1001;
д) 0.0101 1001 0100 0111 0011;
е) 0101 1001 0100 0111 0101 0011;
ж) 0101 1001 0100 0111 0110 0011;
9). (из 18): Укажите, была ли потеря информации при передаче данных, если для проверки целостности данных использовался метод «Проверка на чётность» (см. рис. 4.3). В качестве контрольного разряда выступал 9 бит (если считать слева на право):
Выберите несколько правильных ответов
а) 2, 3 случай – потери не было;
б) 1, 2, 3 случай – потери не было;
в) 4 случай – потеря была;
г) 3, 4 случай – потери не было;
д) 1, 4 случай – потеря была;
е) 1, 2 случай – потеря была;
ж) 2, 4 случай – потери не было;
з) 1, 3 случай – потеря была;
10). (из 18): Выберите правильные утверждения:
Выберите несколько правильных ответов
а) в коде Хемминга контрольный разряд с номером 2 контролирует следующие биты: 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 и т. д.;
б) в коде Хемминга контрольный разряд с номером 2 контролирует следующие биты: 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23, 26, 27, 30, 31, 34, 35 и т. д.;
в) в коде Хемминга контрольный разряд с номером 4 контролирует следующие биты: 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39 и т. д.;
г) в коде Хемминга контрольный разряд с номером 4 контролирует следующие биты: 1, 2, 3, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31, 36, 37, 38, 39 и т. д.;
д) в коде Хемминга контрольный разряд с номером 6 контролирует следующие биты: 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 30, 31, 32, 33, 34, 35, 42, 43, 44, 45, 46, 47 и т. д.;
е) в коде Хемминга контрольный разряд с номером 6 контролирует следующие биты: 6, 7, 8, 9, 10, 11, 18, 19, 20, 21, 22, 23, 30, 31, 32, 33, 34, 35, 43, 44, 45, 46, 47,48 и т. д.;
11). (из 18): Укажите, используя код Хемминга, была ли ошибка при передаче данных размером в 16 бит (см. рис. 4.4). В коде Хемминга выполняется проверка на чётность:
Выберите несколько правильных ответов
а) при передаче данных была нарушена целостность информации;
б) был изменён 12 бит;
в) был изменён 16 бит;
г) при передаче данных не была нарушена целостность информации;
д) все контрольные биты правильные;
12). (из 18): С помощью кода Хемминга можно обнаруживать двойные ошибки, если:
Выберите единственный правильный ответ
а) ввести ещё два разряда общей чётности;
б) использовать простой код Хемминга, с его помощью можно обнаруживать двойные ошибки;
в) ввести ещё один разряд общей чётности;
г) одна из ошибок находится в контрольном разряде;
13). (из 18): Логическое сложение называется:
Выберите единственный правильный ответ
а) коньюнкцией;
б) импликацией;
в) эквиваленцией;
г) дизьюнкцией;
14). (из 18): Укажите операцию, которая приведена на рис. (4.5).
Выберите несколько правильных ответов
а) стрелка Пирса;
б) сумма по модулю 2;
в) штрих Шеффера;
г) импликация;
д) эквиваленция;
е) х1*НЕх2+НЕх1*х2;
15). (из 18): Укажите логическую операцию, которая была выполнена над двумя двоичными числами (см. рис. 4.6):
Выберите единственный правильный ответ
а) была выполнена операция «Стрелка Пирса»;
б) была выполнена операция «Штрих Шеффера»;
в) была выполнена операция дизьюнкция;
г) была выполнена операция коньюнкция;
16). (из 18): Выберите коньюнктивные термы (см. рис. 4.7):
Выберите несколько правильных ответов
а) А);
б) Б);
в) В);
г) Г);
д) Д);
е) Е);
ж) Ж);
з) З);
17). (из 18): Любая таблично заданная функция алгебры логики может быть представлена аналитически в виде:
Выберите несколько правильных ответов
а) дизъюнкции конечного числа минтермов, на каждом из которых функция равна единице;
б) дизъюнкции конечного числа макстермов, на каждом из которых функция равна единице;
в) дизъюнкции конечного числа минтермов, на каждом из которых функция равна нулю;
г) коньюнкции конечного числа мактермов, на каждом из которых функция равна нулю;
д) коньюнкции конечного числа минтермов, на каждом из которых функция равна нулю;
е) коньюнкции конечного числа минтермов, на каждом из которых функция равна единице;
18). (из 18): Укажите для функции f(A,B,C) правильную таблицу истинности (см. рис. 4.8):
Выберите единственный правильный ответ
а) А);
б) Б);
в) В);
г) Г);